
10-725/36-725: Convex Optimization Spring 2015

Lecture 5: Gradient Descent
Lecturer: Ryan Tibshirani Scribes: Loc Do,2,3

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor. Some of the content
in this note are borrowed from the Boyd & Vandenbergheś book.

This lecture is about Gradient Descent, the first algorithm in a series of first-order methods for solving
optimization problem.

5.1 Unconstrained minimization problems and Gradient descent

Let consider unconstrained, smooth convex optimization problems in the form of

min f(x) (5.1)

where f : Rn → R is convex, twice differentiable, with dom (f) = R (no constrains) Assume that the problem
is solvable, we denote the optimal value, f∗ = minx f(x) and optimal solution as x∗ = arg minx f(x).

To find x∗, one approach is to solve a system of equation ∇f(x∗) = 0, which is often not easy to solve
analytically. Hence, an iterative scheme is more preferred: computing a minimizing sequence of points
x(0), x(1), . . . such that f(x(k)) → f(x∗) as k → ∞. The algorithm stops at some points when the residual
error between current state and optimal value is within an acceptable tolerance, i.e. f(x(k))− p∗ ≤ ε.

Gradient Descent is an iterative algorithm producing such a minimizing sequence x(k) by repeating

x(k) = x(k−1) − tk∇f(x(k−1)), (5.2)

where k = 1, 2, . . . is iteration number, tk is step size (or step length) at iteration k, initial x0 ∈ Rn is usually
given. We can prove that f(x(k)) < f(x(k−1) by applying first-order approximation on the LHS as follows

f(x(k)) = f(x(k−1) − tk∇f(x(k−1))) ≈ f(x(k−1))− t∇f(x(k−1))T∇f(x(k−1)) ≤ f(x(k−1)) (5.3)

Basically, by following the points generated by Gradient Descent, we are guaranteed to reach closer to the
optimal values of the functions. However, it depends on whether the function is convex or non-convex that
we can reach global optimum or local optima (illustrated in Figure 5.1).

Interpretation of Gradient Descent. Now we consider a more formal interpretation of Gradient Descent.
At each iteration, we want to move from our current point x to point y such that f(y) is optimal. Since f
is twice differentiable, apply the quadratic approximation on f(y) to have

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(θ(x− y) + y)(y − x) (5.4)

where θ ∈ [0..1]. By replacing ∇2f(θ(x− y) + y) by 1
t I, we can represent f(y) as follows

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
||y − x||22 = g(y) (5.5)

5-1

5-2 Lecture 5: Gradient Descent

(a) Convex function (b) Non-convex function

Figure 5.1: Gradient Descent paths with different starting points are illustrated in different colours. In the
case of strictly convex function (lFigure a.), Gradient Descent paths starting from any points all lead to the
global optimum. Conversely, in the case of non-convex function, different paths may end up at different local
optima.

.

the first additive term is called linear approximation, and the second one is proximity term. Basically, the
proximity term tell us that we should not go to far from x, otherwise results in large f(y). To find optimal
value of y, we solve the equality ∇g(y) = 0⇔ ∇f(x)+ 1

t (y−x) = 0⇔ y = x− t∇f(x). Figure 5.2 illustrates
this optimal movement.

5.2 How to choose step sizes

Recall that the update rule of Gradient Descent requires a step size tk controlling the amount of gradient
updated to the current point at each iteration. A naive strategy is to set a constant tk = t for all iterations.
This strategy poses two problems. A too big t can lead to divergence, meaning the learning function oscillates
away from the optimal point. A too small t takes longer time for the function to converge. A good selection
of t can make the algorithm faster to converge, as illustrated in Figure 5.3. Hence, we need good strategies to
select appropriate step sizes. Two examples of such approaches are backtracking line search and exact
line search.

Backtracking line search The main idea of this strategy is to pick step sizes to reduce f approximately.
The strategy is described as follows.

• First fix two parameters 0 < β < 1 and 0 < α ≤ 0.5.

• At each iteration, start with t = 1, and while

f(x− t∇f(x)) > f(x)− αt||∇f(x)||22, (5.6)

shrink t = βt. Else perform Gradient Descent update x+ = x− t∇f(x).

Lecture 5: Gradient Descent 5-3

Figure 5.2: Solid curve depicts f . Dashed curve depicts g, which is second-order approximation of f .
Proximity term prevents y having lower values.

(a) t is too large (after 8 steps) (b) t is too small (after 100 steps) (c) t is good (after 40 steps)

Figure 5.3: Consider the function f(x) =
10x2

1+x2
2

2 .
.

This approach will eventually terminate. For small enough t, we may have

f(x− t∇f(x)) ≈ f(x)− t||∇f(x)||22 < f(x)− αt||∇f(x)||22 (5.7)

Parameter α controls the decrease in f of the prediction based on the linear approximation. β controls how
much exhaustive the search for t is. As suggested in B&V book, α ∈ 0.01, 03] and β ∈ [0.1, 0.8].

5-4 Lecture 5: Gradient Descent

Figure 5.4: Backtracking line search with α = β = 0.5. We can see the step side is adjusted appropriately
after every iteration (large step size at early iterations and keep decreasing when getting closer to the optimal
values).

Exact line search Backtrack line search is often known as inexact line search since it selects step size to
reduce f approximately. We can also choose step size to do the best as we can along the direction of negative
gradient. This strategy is called exact line search.

t = arg min
s≥0

f(x− s∇f(x)) (5.8)

Usually Equation 5.8 is not possible to solve exactly. Approximations to the solution are not more efficient
than backtracking.

5.3 Convergence analysis

Assume that f is convex, differentiable with dom (f) = Rn and Lipschitz gradient with constant L > 0.
We have the following theorem.

Theorem 5.1 Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f∗ ≤ ||x
(0) − x∗||22

2tk
(5.9)

Proof: Since ∇f is Lipschitz continuous with constant L > 0, we have

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
||y − x||22,∀x, y (5.10)

(Note: Proof of the inequality in Equation 5.10 is part of homework 1) Assume that y is computed from x
using Gradient descent update rule

y = x+ = x− t∇f(x)⇔ ∇f(x) =
x− x+

t
(5.11)

Lecture 5: Gradient Descent 5-5

Substitute Equation 5.11 to Equation 5.10, we have

f(x+) ≤ f(x) +∇f(x)T (−t∇f(x)) +
L

2
t2||∇f(x)||22

= f(x)− t||∇f(x)||22 +
Lt2

2
||∇f(x)||22

= f(x)− (1− Lt

2
)t||∇f(x)||22 (5.12)

Note that (1− Lt
2)t ≥ t

2 for t ∈ (0, 1
L], we can bound Equation 5.12

f(x+) ≤ f(x)− t

2
||∇f(x)||22 = f(x)− t

2
||x− x

+

t
||22 = f(x)− 1

2t
||x− x+||22 (5.13)

By the convexity of f , we can write

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x)⇔ f(x) ≤ f(x∗) +∇f(x)T (x− x∗) (5.14)

Hence, we can substitute Equation 5.14 to Equation 5.13

f(x+) ≤ f(x∗) +∇f(x)T (x− x∗)− 1

2t
||x+ − x||22

= f(x∗) + (
x− x+

t
)T (x− x∗)− 1

2t
||x+ − x||22

= f(x∗) +
1

t
(x− x+)T (x− x∗)− 1

2t
||x+ − x||22

= f(x∗) +
1

2t
(2(x− x+)T (x− x∗)− ||x+ − x||22)

= f(x∗) +
1

2t
(2(x− x+)T (x− x∗)− ||x+ − x||22 + ||x− x∗||22 − ||x− x∗||22)

= f(x∗) +
1

2t
(−(||x− x∗||22 − 2(x− x+)T (x− x∗) + ||x+ − x||22) + ||x− x∗||22)

= f(x∗) +
1

2t
(−||x+ − x∗||22 + ||x− x∗||22)

(5.15)

Move f(x∗) to the LHS, we have

f(x+)− f(x∗) ≤ 1

2t
(−||x+ − x∗||22 + ||x− x∗||22) (5.16)

Summing all the LHS over different k, we have

k∑
i=1

f(x(i))− f(x∗) =
1

2t

k∑
i=1

(||x(i−1) − x∗||22 − ||x(i) − x∗||22)

=
1

2t
(||x0 − x∗||22 − ||x(k) − x∗||22) ≤ 1

2t
||x0 − x∗||22 (5.17)

Since f(x(k)) ≤ . . . ≤ f(x(1)), we have

k(f(x(k))− f(x∗)) ≤
k∑

i=1

f(x(i))− f(x∗) ≤ 1

2t
||x0 − x∗||22 (5.18)

Divide both sides to k, we have Theorem 5.1.

A couple of things to note from this convergence analysis:

5-6 Lecture 5: Gradient Descent

• We say Gradient Descent has convergence rate O(1/k). In other words, to get f(x(k)) − f∗ ≤ ε, we
need O(1/ε) iterations.

• Equation 5.12 recalls us the stopping condition in Backtracking line search when α = 0.5, t = 1
L .

Hence, Backtracking line search with α = 0.5 plus condition of Lipschitz gradient will guarantee us the
convergence rate of O(1/k).

5.3.1 Convergence analysis for Backtracking line search

With the same assumption as above, namely f is convex, differentiable with dom (f) = Rn and Lipschitz
gradient with constant L > 0. We have the following theorem.

Theorem 5.2 Gradient descent with backtracking line search satisfies

f(x(k))− f∗ ≤ ||x
(0) − x∗||22
2tmink

, (5.19)

where tmin = min{1, β/L}

It is obvious to see that Backtracking line search arrives at the similar rate with fixed step size. The only
difference is the amount of penalty is now controlled by tmin, which again depends on β. β = 1 returns the
exact rate of fixed step size. Not too small β would return a comparable result to fixed step size.

5.3.2 Convergence analysis under strong convexity

Recall that a function f is strongly convex for some m > 0 if f(x) − m
2 ||x||

2
2 is convex. Using the same

assumption as above, Lipschitz gradient, plus strong convexity, we have the following theorem

Theorem 5.3 Gradient descent with fixed step size t ≤ 2
m+L or with backtracking line search satisfies

f(x(k))− f∗ ≤ ckL
2
||x(0) − x∗||22, (5.20)

where 0 < c < 1.

(Note: Proof of this theorem is part of homework 2.)

Theorem 5.3 gives us an exponentially fast converge rate (O(ck)). In other word, we can say that to
get f(x(k) − f∗ ≤ ε, we only need O(log(1/ε)) iterations. Hence, sometimes this rate is known as linear
convergence.

Constant c depends adversely on condition number L/m. Higher condition number will lead to slower rate.

5.3.3 Example of the conditions

Let consider f(β) = 1
2 ||y −Xβ||

2
2.

Lipschitz continuity of ∇f :

Lecture 5: Gradient Descent 5-7

• ∇2f(x) � LI

• As ∇2f(β) = XTX, we have L = σ2
max(X) (i.e. largest eigen value of XTX)

Strong convexity of f :

• ∇2f(x) � mI

• As ∇2f(β) = XTX, we have m = σ2
min(X)

• If X is wide, X is n × p with p > n(more columns than rows, i.e. more features than observations),
σ2
min(X) = 0 (XTX is rank deficient), and f can’t be strongly convex.

• If σmin(X) > 0, we can have very large condition number L/m = σmax(X)/σmin(X)

5.3.4 Practicalities

Now we know that Gradient Descent can eventually lead to convergence under some assumptions after a
large number of iterations. A good stopping condition in practice is that ||∇f(x)||2 is small (Recall that
||∇f(x)||2 = 0 at solution x∗). If f is strongly convex with parameter m, then we can stop when

||∇f(x)||2 ≤
√

(2mε)→ f(x)− f∗ ≤ ε (5.21)

Pros and Cons of Gradient Descent:

• Pro: simple idea (iteratively moving toward the steepest descent), each iteration is cheap (need to
recompute the gradients)

• Pro: very fast for well-conditioned, strongly convex problems.

• Con: often slow, because interesting problems are not strongly convex or well-conditioned.

• Con: can’t handle non-differentiable functions.

5.4 Summary

Gradient Descent belongs to a group of first-order method, basically, algorithms that update x(k) in the
following linear space

x(0) + span{∇f(x(0)), . . . ,∇f(x(k−1))} (5.22)

The algorithm has O(1/ε) rate over problem class of convex, differentiable functions with Lipschitz continuous
gradients.

Theorem 5.4 For any iteration k ≤ (n − 1)/2 and any starting point x(0), there is a function f in the
problem class such that any first-order method satisfies

f(x(k))− f∗ ≥ 3L||x(0) − x∗||22
32(k + 1)2

(5.23)

This theorem sets a lower bound on the rate, telling us that we cannot do better than O(1/k2). However,
we can tweak the algorithm to have better rate of O(1/

√
ε) (e.g. using acceleration techniques). Besides,

there are other algorithms that allow us to solve more complex functions, i.e. non-differentiable functions.

